Using vector divisions in solving the linear complementarity problem

نویسندگان

  • Youssef Elfoutayeni
  • Mohamed Khaladi
چکیده

The linear complementarity problem is to find vector z in IR satisfying z (Mz + q) = 0, Mz + q > 0, z > 0, where M as a matrix and q as a vector, are given data; this problem becomes in present the subject of much important research because it arises in many areas and it includes important fields, we cite for example the linear and nonlinear programming, the convex quadratic programming and the variational inequalities problems, ... It is known that the linear complementarity problem is completely equivalent to solving nonlinear equation F (x) = 0 with F is a function from IR into itself defined by F (x) = (M + I)x + (M − I)|x| + q. In this paper we propose a globally convergent hybrid algorithm for solving this equation; this method is based on an algorithm given by Shi [22], he uses vector divisions with the secant method; but for using this method we must have a function continuous with partial derivatives on an open set of IR; so we built a sequence of functions F̃ (p, x) ∈ C which converges uniformly to the function F (x); and we show that finding the zero of the function F is completely equivalent to finding the zero of the sequence of the functions F̃ (p, x). We close our paper with some numerical simulation examples to illustrate our theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem

‎A full Nesterov-Todd (NT) step infeasible interior-point algorithm‎ ‎is proposed for solving monotone linear complementarity problems‎ ‎over symmetric cones by using Euclidean Jordan algebra‎. ‎Two types of‎ ‎full NT-steps are used‎, ‎feasibility steps and centering steps‎. ‎The‎ ‎algorithm starts from strictly feasible iterates of a perturbed‎ ‎problem‎, ‎and, using the central path and feasi...

متن کامل

An infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step

An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...

متن کامل

An interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function

In this paper, an interior-point algorithm  for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...

متن کامل

Corrector-predictor arc-search interior-point algorithm for $P_*(kappa)$-LCP acting in a wide neighborhood of the central path

In this paper, we propose an arc-search corrector-predictor interior-point method for solving $P_*(kappa)$-linear complementarity problems. The proposed algorithm searches the optimizers along an ellipse that is an approximation of the central path. The algorithm generates a sequence of iterates in the wide neighborhood of central path introduced by Ai and Zhang. The algorithm does not de...

متن کامل

A Min-Max Algorithm for Solving the Linear Complementarity Problem

Abstract The Linear Complementarity Problem ) , ( q M LCP is to find a vector x in n IR satisfying 0  x , 0   q Mx and x T (Mx+q)=0, where M as a matrix and q as a vector, are given data. In this paper we show that the linear complementarity problem is completely equivalent to finding the fixed point of the map x = max (0, (I-M)x-q); to find an approximation solution to the second problem, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 236  شماره 

صفحات  -

تاریخ انتشار 2012